ivo_table() lets you easily create a table using pretty fonts and colors. If you want the table with masked values use ivo_table_masked().
Usage
ivo_table(
df,
extra_header = TRUE,
exclude_missing = FALSE,
missing_string = "(Missing)",
colsums = FALSE,
rowsums = FALSE,
sums_string = "Total",
caption = NA,
highlight_cols = NULL,
highlight_rows = NULL,
percent_by = NA,
color = "darkgreen",
font_name = "Arial",
bold_cols = NULL,
long_table = FALSE,
remove_zero_rows = FALSE
)Arguments
- df
A data frame with 1-4 columns
- extra_header
Should the variable name be displayed? Defaults to TRUE.
- exclude_missing
Whether to exclude missing values from the table. Defaults to FALSE.
- missing_string
A string used to indicate missing values. Defaults to "(Missing)".
- colsums
A logical indicating whether the sum of each column should be computed. Defaults to FALSE.
- rowsums
A logical indicating whether the sum of each row should be computed. Defaults to FALSE.
- sums_string
A string that is printed in the column/row where row/column sums are shown. Defaults to "Total".
- caption
An optional string containing a table caption.
- highlight_cols
A numeric vector containing the indices of the columns that should be highlighted.
- highlight_rows
A numeric vector containing the indices of the rows that should be highlighted.
- percent_by
Used to get percentages instead of frequencies. There are three options: "row" to get percentages by row (each row sum is 100 percent), "col" to get percentages by column (each the sum of each row to 100 percent) and "tot" to get percentages out of the total (the sum of all cells is 100 percent). The default, NA, means that frequencies are displayed instead.
- color
A named color or a color HEX code, used for the lines in the table. Defaults to "darkgreen".
- font_name
The name of the font to be used in the table. Defaults to "Arial".
- bold_cols
A numeric vector containing the indices of the columns that should use a bold font.
- long_table
For one-way tables: FALSE (the default) means that the table will be wide and consist of a single row, TRUE means that the table will be long and consist of a single column.
- remove_zero_rows
If set to TRUE, removes all rows that contain nothing but zeros. The default is FALSE.
Details
The functions ivo_table() and ivo_table_masked() takes a data.frame with 1-4 columns. The order of the columns in the data.frame will determine where they will be displayed in the table. The first column will always be displayed at the top of the table. If there are more than one column the following 2-4 columns will be displayed to the left in the order 2, 3, 4. To change how the columns are displayed in the table; change the place of the columns in the data.frame using dplyr::select().
Examples
# Generate example data
example_data <- data.frame(Year = sample(2020:2023, 50, replace = TRUE),
A = sample(c("Type 1", "Type 2"), 50, replace = TRUE),
B = sample(c("Apples", "Oranges", "Bananas"), 50, replace = TRUE),
C = sample(c("Swedish", "Norwegian", "Chilean"), 50, replace = TRUE))
### 1 way tables ###
data1 <- example_data |> dplyr::select(Year)
ivo_table(data1)
Year
2020
2021
2022
2023
9
8
16
17
ivo_table(data1, extra_header = FALSE) # Remove the header
2020
2021
2022
2023
9
8
16
17
ivo_table(data1, color = "orange") # Change color on table lines
Year
2020
2021
2022
2023
9
8
16
17
ivo_table(data1, long_table = TRUE) # Draw the table in a long format
Year
Count
2020
9
2021
8
2022
16
2023
17
ivo_table(data1, font_name = "Garamond") # Use a different font
Year
2020
2021
2022
2023
9
8
16
17
ivo_table_masked(data1) # No masking because all counts are >=5
Year
2020
2021
2022
2023
9
8
16
17
ivo_table_masked(data1, cell = 15) # Counts below <=15 are masked
Year
2020
2021
2022
2023
1-15
1-15
16
17
# With pipes
example_data |> dplyr::select(Year) |> ivo_table()
Year
2020
2021
2022
2023
9
8
16
17
### 2-way tables ###
data2 <- example_data |> dplyr::select(A, B)
data2_swap <- example_data |> dplyr::select(B, A)
# Basic tables:
ivo_table(data2)
A
B
Type 1
Type 2
Apples
5
8
Bananas
7
10
Oranges
8
12
ivo_table(data2_swap) # Swap order of the columns
B
A
Apples
Bananas
Oranges
Type 1
5
7
8
Type 2
8
10
12
ivo_table(data2, colsums = TRUE) # Add the sum of each column
A
B
Type 1
Type 2
Apples
5
8
Bananas
7
10
Oranges
8
12
Total
20
30
ivo_table(data2, rowsums = TRUE) # Add the sum of each row
A
B
Type 1
Type 2
Total
Apples
5
8
13
Bananas
7
10
17
Oranges
8
12
20
ivo_table(data2, caption = "Awesome table") # Add a caption
Awesome table
A
B
Type 1
Type 2
Apples
5
8
Bananas
7
10
Oranges
8
12
ivo_table(data2, highlight_cols = 3) # Highlight column 3
A
B
Type 1
Type 2
Apples
5
8
Bananas
7
10
Oranges
8
12
ivo_table(data2, highlight_rows = 2, highlight_cols = 3) # Highlight cell at row 2 column 3
A
B
Type 1
Type 2
Apples
5
8
Bananas
7
10
Oranges
8
12
ivo_table(data2, bold_cols = 1) # Make the names in the first column bold
A
B
Type 1
Type 2
Apples
5
8
Bananas
7
10
Oranges
8
12
# Tables with percentages:
ivo_table(data2, percent_by = "row") # By row
A
B
Type 1
Type 2
Apples
38,5 %
61,5 %
Bananas
41,2 %
58,8 %
Oranges
40,0 %
60,0 %
ivo_table(data2, percent_by = "col") # By column
A
B
Type 1
Type 2
Apples
25,0 %
26,7 %
Bananas
35,0 %
33,3 %
Oranges
40,0 %
40,0 %
ivo_table(data2, percent_by = "tot") # By total
A
B
Type 1
Type 2
Apples
10,0 %
16,0 %
Bananas
14,0 %
20,0 %
Oranges
16,0 %
24,0 %
# Masked tables:
ivo_table_masked(data2)
A
B
Type 1
Type 2
Apples
1-5
8
Bananas
7
10
Oranges
8
12
ivo_table_masked(data2, cell = 7) # Counts <= 7 are masked
A
B
Type 1
Type 2
Apples
1-7
8
Bananas
1-7
10
Oranges
8
12
# Row and column sums are also masked:
ivo_table_masked(
data2,
cell = 3,
colsums = TRUE,
rowsums = TRUE)
A
B
Type 1
Type 2
Total
Apples
5
8
13
Bananas
7
10
17
Oranges
8
12
20
Total
20
30
50
# Add a note at the end of the table:
# (colwidths must be set to the number of columns in the table)
ivo_table(data2) |>
flextable::add_footer_row(values = "This is a footnote.",
colwidths = 3)
A
B
Type 1
Type 2
Apples
5
8
Bananas
7
10
Oranges
8
12
This is a footnote.
# Add footnotes to cells in the table:
ivo_table(data2) |>
flextable::footnote(i = c(1, 3), j = c(1, 2),
value = flextable::as_paragraph(c(
"Some remark.",
"Some comment.")),
ref_symbols = c("a", "b"))
A
B
Type 1
Type 2
Applesa
5
8
Bananas
7
10
Oranges
8b
12
aSome remark.
bSome comment.
# Add footnotes to cells in the table header:
ivo_table(data2) |>
flextable::footnote(i = 2, j = c(1, 3),
value = flextable::as_paragraph(c(
"Some remark.",
"Some comment.")),
ref_symbols = c("a", "b"),
part = "header")
A
Ba
Type 1
Type 2b
Apples
5
8
Bananas
7
10
Oranges
8
12
aSome remark.
bSome comment.
### 3-way tables ###
data3 <- example_data |> dplyr::select(C, B, Year)
ivo_table(data3)
C
B
Year
2020
2021
2022
2023
Chilean
Apples
1
0
3
1
Bananas
0
0
1
1
Oranges
1
0
1
3
Norwegian
Apples
2
0
2
1
Bananas
3
2
1
2
Oranges
1
2
4
1
Swedish
Apples
0
1
0
2
Bananas
1
1
2
3
Oranges
0
2
2
3
ivo_table(data3, colsums = TRUE, rowsums = TRUE) # Add the sum of each column and each row
C
B
Year
2020
2021
2022
2023
Total
Chilean
Apples
1
0
3
1
5
Bananas
0
0
1
1
2
Oranges
1
0
1
3
5
Norwegian
Apples
2
0
2
1
5
Bananas
3
2
1
2
8
Oranges
1
2
4
1
8
Swedish
Apples
0
1
0
2
3
Bananas
1
1
2
3
7
Oranges
0
2
2
3
7
Total
9
8
16
17
50
ivo_table_masked(
data3,
cell = 3,
caption = "Values between 1 and 3 are masked."
)
Values between 1 and 3 are masked.
C
B
Year
2020
2021
2022
2023
Chilean
Apples
1-3
0
1-3
1-3
Bananas
0
0
1-3
1-3
Oranges
1-3
0
1-3
1-3
Norwegian
Apples
1-3
0
1-3
1-3
Bananas
1-3
1-3
1-3
1-3
Oranges
1-3
1-3
4
1-3
Swedish
Apples
0
1-3
0
1-3
Bananas
1-3
1-3
1-3
1-3
Oranges
0
1-3
1-3
1-3
### 4-way tables ###
data4 <- example_data |> dplyr::select(Year, B, C, A)
ivo_table(data4)
Year
B
C
A
Type 1
Type 2
2020
Apples
Chilean
0
1
Norwegian
1
1
Swedish
0
0
Bananas
Chilean
0
0
Norwegian
2
1
Swedish
1
0
Oranges
Chilean
1
0
Norwegian
0
1
Swedish
0
0
2021
Apples
Chilean
0
0
Norwegian
0
0
Swedish
1
0
Bananas
Chilean
0
0
Norwegian
0
2
Swedish
1
0
Oranges
Chilean
0
0
Norwegian
2
0
Swedish
1
1
2022
Apples
Chilean
1
2
Norwegian
0
2
Swedish
0
0
Bananas
Chilean
0
1
Norwegian
0
1
Swedish
1
1
Oranges
Chilean
0
1
Norwegian
1
3
Swedish
1
1
2023
Apples
Chilean
0
1
Norwegian
0
1
Swedish
2
0
Bananas
Chilean
1
0
Norwegian
0
2
Swedish
1
2
Oranges
Chilean
2
1
Norwegian
0
1
Swedish
0
3
ivo_table(data4, remove_zero_rows = TRUE) # Remove the row with zeros
Year
B
C
A
Type 1
Type 2
2020
Apples
Chilean
0
1
Norwegian
1
1
Bananas
Norwegian
2
1
Swedish
1
0
Oranges
Chilean
1
0
Norwegian
0
1
2021
Apples
Swedish
1
0
Bananas
Norwegian
0
2
Swedish
1
0
Oranges
Norwegian
2
0
Swedish
1
1
2022
Apples
Chilean
1
2
Norwegian
0
2
Bananas
Chilean
0
1
Norwegian
0
1
Swedish
1
1
Oranges
Chilean
0
1
Norwegian
1
3
Swedish
1
1
2023
Apples
Chilean
0
1
Norwegian
0
1
Swedish
2
0
Bananas
Chilean
1
0
Norwegian
0
2
Swedish
1
2
Oranges
Chilean
2
1
Norwegian
0
1
Swedish
0
3
# Add the sum of each column and each row and highlight column 6:
ivo_table(
data4,
colsums = TRUE,
rowsums = TRUE,
highlight_cols = 6)
Year
B
C
A
Type 1
Type 2
Total
2020
Apples
Chilean
0
1
1
Norwegian
1
1
2
Swedish
0
0
0
Bananas
Chilean
0
0
0
Norwegian
2
1
3
Swedish
1
0
1
Oranges
Chilean
1
0
1
Norwegian
0
1
1
Swedish
0
0
0
2021
Apples
Chilean
0
0
0
Norwegian
0
0
0
Swedish
1
0
1
Bananas
Chilean
0
0
0
Norwegian
0
2
2
Swedish
1
0
1
Oranges
Chilean
0
0
0
Norwegian
2
0
2
Swedish
1
1
2
2022
Apples
Chilean
1
2
3
Norwegian
0
2
2
Swedish
0
0
0
Bananas
Chilean
0
1
1
Norwegian
0
1
1
Swedish
1
1
2
Oranges
Chilean
0
1
1
Norwegian
1
3
4
Swedish
1
1
2
2023
Apples
Chilean
0
1
1
Norwegian
0
1
1
Swedish
2
0
2
Bananas
Chilean
1
0
1
Norwegian
0
2
2
Swedish
1
2
3
Oranges
Chilean
2
1
3
Norwegian
0
1
1
Swedish
0
3
3
Total
20
30
50
ivo_table_masked(data4, colsums = TRUE, rowsums = TRUE)
Year
B
C
A
Type 1
Type 2
Total
2020
Apples
Chilean
0
1-5
NA
Norwegian
1-5
1-5
NA
Swedish
0
0
0
Bananas
Chilean
0
0
0
Norwegian
1-5
1-5
NA
Swedish
1-5
0
NA
Oranges
Chilean
1-5
0
NA
Norwegian
0
1-5
NA
Swedish
0
0
0
2021
Apples
Chilean
0
0
0
Norwegian
0
0
0
Swedish
1-5
0
NA
Bananas
Chilean
0
0
0
Norwegian
0
1-5
NA
Swedish
1-5
0
NA
Oranges
Chilean
0
0
0
Norwegian
1-5
0
NA
Swedish
1-5
1-5
NA
2022
Apples
Chilean
1-5
1-5
NA
Norwegian
0
1-5
NA
Swedish
0
0
0
Bananas
Chilean
0
1-5
NA
Norwegian
0
1-5
NA
Swedish
1-5
1-5
NA
Oranges
Chilean
0
1-5
NA
Norwegian
1-5
1-5
NA
Swedish
1-5
1-5
NA
2023
Apples
Chilean
0
1-5
NA
Norwegian
0
1-5
NA
Swedish
1-5
0
NA
Bananas
Chilean
1-5
0
NA
Norwegian
0
1-5
NA
Swedish
1-5
1-5
NA
Oranges
Chilean
1-5
1-5
NA
Norwegian
0
1-5
NA
Swedish
0
1-5
NA
Total
NA
NA
NA
