Skip to contents

ivo_table_masked() lets you easily create pretty masked tables. If you want the table without masked values use ivo_table() instead.

Usage

ivo_table_masked(
  df,
  cell = 5,
  extra_header = TRUE,
  exclude_missing = FALSE,
  missing_string = "(Missing)",
  colsums = FALSE,
  rowsums = FALSE,
  sums_string = "Total",
  caption = NA,
  highlight_cols = NULL,
  highlight_rows = NULL,
  color = "darkgreen",
  font_name = "Arial",
  bold_cols = NULL,
  long_table = FALSE,
  remove_zero_rows = FALSE
)

Arguments

df

A data frame with 1-4 columns

cell

The largest value that will be masked. Defaults to 5, meaning that values between 1 and 5 are masked.

extra_header

Should the variable name be displayed? Defaults to TRUE.

exclude_missing

Whether to exclude missing values from the table. Defaults to FALSE.

missing_string

A string used to indicate missing values. Defaults to "(Missing)".

colsums

A logical indicating whether the sum of each column should be computed. Defaults to FALSE.

rowsums

A logical indicating whether the sum of each row should be computed. Defaults to FALSE.

sums_string

A string that is printed in the column/row where row/column sums are shown. Defaults to "Total".

caption

An optional string containing a table caption.

highlight_cols

A numeric vector containing the indices of the columns that should be highlighted.

highlight_rows

A numeric vector containing the indices of the rows that should be highlighted.

color

A named color or a color HEX code, used for the lines in the table. Defaults to "darkgreen".

font_name

The name of the font to be used in the table. Defaults to "Arial".

bold_cols

A numeric vector containing the indices of the columns that should use a bold font.

long_table

For one-way tables: FALSE (the default) means that the table will be wide and consist of a single row, TRUE means that the table will be long and consist of a single column.

remove_zero_rows

If set to TRUE, removes all rows that contain nothing but zeros. The default is FALSE.

Value

A stylized flextable.

Details

The functions ivo_table() and ivo_table_masked() takes a data.frame with 1-4 columns. The order of the columns in the data.frame will determine where they will be displayed in the table. The first column will always be displayed at the top of the table. If there are more than one column the following 2-4 columns will be displayed to the left in the order 2, 3, 4. To change how the columns are displayed in the table; change the place of the columns in the data.frame using dplyr::select().

See also

ivo_table_add_mask

Author

Måns Thulin and Kajsa Grind

Examples

# Generate example data
example_data <- data.frame(Year = sample(2020:2023, 50, replace = TRUE),
A = sample(c("Type 1", "Type 2"), 50, replace = TRUE),
B = sample(c("Apples", "Oranges", "Bananas"), 50, replace = TRUE),
C = sample(c("Swedish", "Norwegian", "Chilean"), 50, replace = TRUE))

### 1-way tables ###
data1 <- example_data |> dplyr::select(Year)
ivo_table_masked(data1) # No masking because all counts are >=5

Year

2020

2021

2022

2023

10

14

14

12

ivo_table_masked(data1, cell = 15) # Counts below <=15 are masked

Year

2020

2021

2022

2023

1-15

1-15

1-15

1-15

# With pipes example_data |> dplyr::select(Year) |> ivo_table()

Year

2020

2021

2022

2023

10

14

14

12

### 2-way tables ### data2 <- example_data |> dplyr::select(A, B) ivo_table_masked(data2)

A

B

Type 1

Type 2

Apples

9

1-5

Bananas

9

7

Oranges

9

11

ivo_table_masked(data2, cell = 7) # Counts <= 7 are masked

A

B

Type 1

Type 2

Apples

9

1-7

Bananas

9

1-7

Oranges

9

11

# Row and column sums are also masked: ivo_table_masked( data2, cell = 3, colsums = TRUE, rowsums = TRUE)

A

B

Type 1

Type 2

Total

Apples

9

5

14

Bananas

9

7

16

Oranges

9

11

20

Total

27

23

50

### 3-way tables ### data3 <- example_data |> dplyr::select(C, B, Year) ivo_table_masked( data3, cell = 3, caption = "Values between 1 and 3 are masked." )
Values between 1 and 3 are masked.

C

B

Year

Chilean

Norwegian

Swedish

Apples

2020

1-3

1-3

0

2021

1-3

1-3

1-3

2022

1-3

4

0

2023

1-3

1-3

1-3

Bananas

2020

1-3

1-3

0

2021

1-3

1-3

1-3

2022

1-3

0

1-3

2023

1-3

1-3

1-3

Oranges

2020

1-3

1-3

1-3

2021

1-3

1-3

1-3

2022

1-3

4

0

2023

1-3

1-3

1-3

### 4-way tables ### data4 <- example_data |> dplyr::select(Year, B, C, A) ivo_table_masked(data4, colsums = TRUE, rowsums = TRUE)

Year

B

C

A

2020

2021

2022

2023

Total

Apples

Chilean

Type 1

1-5

1-5

0

0

NA

Type 2

1-5

0

1-5

1-5

NA

Norwegian

Type 1

1-5

1-5

1-5

1-5

NA

Type 2

0

0

1-5

0

NA

Swedish

Type 1

0

1-5

0

1-5

NA

Type 2

0

0

0

0

0

Bananas

Chilean

Type 1

1-5

1-5

1-5

0

NA

Type 2

0

0

1-5

1-5

NA

Norwegian

Type 1

1-5

1-5

0

1-5

NA

Type 2

1-5

0

0

0

NA

Swedish

Type 1

0

0

1-5

1-5

NA

Type 2

0

1-5

1-5

1-5

NA

Oranges

Chilean

Type 1

1-5

0

1-5

1-5

NA

Type 2

0

1-5

0

1-5

NA

Norwegian

Type 1

0

1-5

1-5

0

NA

Type 2

1-5

0

1-5

1-5

NA

Swedish

Type 1

0

0

0

0

0

Type 2

1-5

1-5

0

1-5

NA

Total

NA

NA

NA

NA

NA